Advances in interior point methods for large-scale linear programming
نویسنده
چکیده
This research studies two computational techniques that improve the practical performance of existing implementations of interior point methods for linear programming. Both are based on the concept of symmetric neighbourhood as the driving tool for the analysis of the good performance of some practical algorithms. The symmetric neighbourhood adds explicit upper bounds on the complementarity pairs, besides the lower bound already present in the common N−∞ neighbourhood. This allows the algorithm to keep under control the spread among complementarity pairs and reduce it with the barrier parameter μ. We show that a long-step feasible algorithm based on this neighbourhood is globally convergent and converges in O(nL) iterations. The use of the symmetric neighbourhood and the recent theoretical understanding of the behaviour of Mehrotra’s corrector direction motivate the introduction of a weighting mechanism that can be applied to any corrector direction, whether originating from Mehrotra’s predictor–corrector algorithm or as part of the multiple centrality correctors technique. Such modification in the way a correction is applied aims to ensure that any computed search direction can positively contribute to a successful iteration by increasing the overall stepsize, thus avoiding the case that a corrector is rejected. The usefulness of the weighting strategy is documented through complete numerical experiments on various sets of publicly available test problems. The implementation within the hopdm interior point code shows remarkable time savings for large-scale linear programming problems. The second technique develops an efficient way of constructing a starting point for structured large-scale stochastic linear programs. We generate a computationally viable warm-start point by solving to low accuracy a stochastic problem of much smaller dimension. The reduced problem is the deterministic equivalent program corresponding to an event tree composed of a restricted number of scenarios. The solution to the reduced problem is then expanded to the size of the problem instance, and used to initialise the interior point algorithm. We present theoretical conditions that the warm-start iterate has to satisfy in order to be successful. We implemented this technique in both the hopdm and the oops frameworks, and its performance is verified through a series of tests on problem instances coming from various stochastic programming sources.
منابع مشابه
ABS Solution of equations of second kind and application to the primal-dual interior point method for linear programming
Abstract We consider an application of the ABS procedure to the linear systems arising from the primal-dual interior point methods where Newton method is used to compute path to the solution. When approaching the solution the linear system, which has the form of normal equations of the second kind, becomes more and more ill conditioned. We show how the use of the Huang algorithm in the ABS cl...
متن کاملAn interior-point algorithm for $P_{ast}(kappa)$-linear complementarity problem based on a new trigonometric kernel function
In this paper, an interior-point algorithm for $P_{ast}(kappa)$-Linear Complementarity Problem (LCP) based on a new parametric trigonometric kernel function is proposed. By applying strictly feasible starting point condition and using some simple analysis tools, we prove that our algorithm has $O((1+2kappa)sqrt{n} log nlogfrac{n}{epsilon})$ iteration bound for large-update methods, which coinc...
متن کاملInterior Point Methods for Large-Scale Linear Programming
We discuss interior point methods for large-scale linear programming, with an emphasis on methods that are useful for problems arising in telecommunications. We give the basic framework of a primal-dual interior point method, and consider the numerical issues involved in calculating the search direction in each iteration, including the use of factorization methods and/or preconditioned conjugat...
متن کاملGlobal convergence of an inexact interior-point method for convex quadratic symmetric cone programming
In this paper, we propose a feasible interior-point method for convex quadratic programming over symmetric cones. The proposed algorithm relaxes the accuracy requirements in the solution of the Newton equation system, by using an inexact Newton direction. Furthermore, we obtain an acceptable level of error in the inexact algorithm on convex quadratic symmetric cone programmin...
متن کاملInterior Point Methods with Decomposition for Solving Large Scale Linear Programs
This paper deals with an algorithm incorporating the interior point method into the Dantzig-Wolfe decomposition technique for solving large-scale linear programming problems. The algorithm decomposes a linear program into a main problem and a subprob-lem. The subproblem is solved approximately. Hence, inexact Newton directions are used in solving the main problem. We show that the algorithm is ...
متن کاملOn Interior-point Methods and Simplex Method in Linear Programming
In this paper we treat numerical computation methods for linear programming. Started from the analysis of the efficiency and defficiency of the simplex procedure, we present new possibilities offered by the interior-point methods, which appears from practical necessity, from the need of efficient means of solving large-scale problems. We realise the implementation in Java of the Karmarkar’s met...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007